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Starting from Head’s semi-empirical method for incompressible flow, two 
approaches to the prediction of turbulent boundary-layer development in 
compressible flow are explored. The first uses Head’s incompressible method in 
conjunction with a compressibility transformation similar to Stewartson’s 
transformation for laminar flow; the second carries over Head‘s physical argu- 
ments to treat the compressible flow directly. Measurements in supersonic flow, 
both on flat plates and downstream of an abrupt pressure rise, show broad 
agreement with the predictions of the second method but do not support the com- 
pressibility transformation. In  particular, measurements on flat plates reveal that 
as Mach number increases the entrainment rate decreases to a lesser extent than 
the skin-friction coefficient. Whilst this result is consistent with the second treat- 
ment in this paper, it  is difficult to reconcile with any of the compressibility 
transformations discussed, and the validity of these transformations in turbulent 
flow is therefore questioned. 

1. Introduction 
Methods for predicting the growth of a turbulent boundary layer in two- 

dimensional incompressible flow proliferate. However, because the structure 
of turbulent shear flow is not fully understood, all these methods are semi- 
empirical and none is entirely satisfactory. For the same reason, no really 
sound basis exists for adapting them to treat high-speed flows or flows with heat, 
or mass transfer at the surface. 

Nevertheless, as flight speeds increase, the need for reliable predictions of 
turbulent boundary-layer phenomena in compressible flow grows. The present 
paper compares two attempts to meet this need by adaptations, based on 
different hypotheses, of a single incompressible calculation procedure. Perhaps 
the greatest value of this exercise is that it focuses attention on processes in the 
outer part of the boundary layer, revealing a trend in experimental data which 
might provide guidance for future work. At the same time, the more successful 
of the two procedures may have some practical worth as an interim prediction 
method. 

The starting point is Head’s (1960) method for incompressible flow, which 
empirically predicts the rate at which fluid is entrained from the free stream into 

t Present address : Royal Aircraft Establishment, Bedford. 
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the boundary layer. In  his extensive survey of calculation methods, Thompson 
(1964) found this treatment appreciably more successful in predicting experi- 
mentally observed flows than any alternative method available at  the time. 
Moreover, although a number of procedures published since Thompson’s work 
seem to be a t  least as successful as Head’s, none has yet been shown to have a 
marked superiority. 

The extension of this method to deal with compressible flow is approached in 
two contrasting ways. The first of these employs Mager’s (1958) transformation, 
which is an adaptation to turbulent flow of Stewartson’s (1949) compressibility 
transformation for the laminar boundary layer. The second extends the under- 
lying assumptions of Head’s method to embrace compressible flows by direct 
physical argument. 

The predictions of the two methods are compared with some measurements, 
made by the author (Green 1966), of boundary-layer development in the con- 
stant-pressure region downstream of an abrupt, shock-induced pressure rise. 
Their application to supersonic flow over a flat plate is also considered, and their 
respective predictions of the variation of shape parameter with Mach number are 
compared with the experimental results of several workers. 

In  both cases experiment broadly supports the second calculation method in 
preference to that based on a compressibility transformation, and the trend of 
the flat plate data plainly conflicts with the implications of the transformation. 
The h a 1  section of the paper discusses this latter result in the context of trans- 
formations in general, with particular reference to the more sophisticated form 
first proposed by Coles (1962). It concludes that none of the transformations 
considered can be reconciled with the observed trend of flat plate shape para- 
meter with Mach number. 

2. Head’s method for incompressible flows 
For turbulent boundary layers in incompressible flow, Head (1960) derived a 

procedure for simultaneously calculating the development of the momentum 
thickness 0 and a quantity herein referred to as mass 00w thickness and written 

where 6 = y at u/u, = 0*995.$ 
In this procedure, the momentum-integral equation 

is integrated simultaneously with an auxiliary equation which accounts for the 
rate at  which the boundary layer entrains fluid from the free stream 

A due _ -  - p- - - a  

dA 
dx 26, ax (2.3) 

t The second equation is inexact, since it neglects the very small contribution to S* of 

$ The definition of 6 is discussed further in 8 7.2. 
the velocity defect in the region y > S. 
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Head argued that the non-dimensional entrainment parameter F was a unique 
function of the shape parameter Hl = Ale, and obtained the empirical relation 
shown in figure 1. He also provided a graphical relation between Hl and the 
conventional shape parameter H = 6*/6, again obtained empirically. The 

8 10 12 0 2 4 6 

HI 

FIGURE 1. Head’s (1960) empirical relation between entrainment and H I .  

choice of a suitable skin-friction relation, for example, that of Ludwieg & 
Tillmann (1949), completed the system of equations needed for a calculation. 

In  using this method with a transformation, the present author recast the 
auxiliary equation in a more conventional form. 

Pate1 (1965) had already observed that the equation 

2H 
H - -  

‘ - H - 1  

which is true for velocity profiles of the one-parameter family ulu, = (y/6)l/” 
fitted Head’s graphical relation very well for values of H below about 2.2 .  The 
present author found that, by cross-plotting from Head’s graphs, a linear rela- 
tion was obtained between the conventional shape parameter H and the entrain- 

F = 0.025H - 0.022, ment P, 
(2 .5 )  

which was again a good fit for H less than 2-2. 
Then, by writing (2.3) as 

H dB -+e- dHl = P - H ~ - - ,  8 due 
l d x  dx ue ax 

48-2 
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substituting for d8/dx from the momentum-integral equation, and differentiating 
(2.4) to relate dHldx and dH,ldx, an auxiliary equation was obtained in the form 

e due H -  1 
[ ( H -  l ) F - H c f ] .  -0- = H(Hz-~) - -+ -  

ax uedx 2 
dH 

This expression, together with the momentum-integral equation (2.2)’ an 
entrainment relation (2.5) and, say, the Ludwieg & Tillmann relation for the 
local skin-friction coefficient, 

provide a step-by-step method for calculating the development of an incom- 
pressible hrbulent boundary layer. 

To check that the analytic approximations to Head’s curves did not signi- 
ficantly affect the method, a calculation by Thompson, using Head’s graphs, of a 
boundary-layer development measured by von Doenhoff and Tetervin (figure 23 
of Thompson’s (1964) paper) was compared with a recalculation using (2.5) and 
(2.6). No significant difference was found. 

3. Application of a compressibility transformation 
3.1. Mager’s transformation 

Mager’s (1958) compressibility transformation, as used here, (with y = 1.4) is 
defined bv the relations 

cf = 0.246 exp ( - 1.561H) R0-oZ6*, (2.7) 

__ - 
U / u e  = ulue, 

where unbarred symbols now refer to properties of a compressible flow, barred 
symbols denote quantities in the transformed plane and a is the speed of sound. 
The kinematic viscosity used in the evaluation of Reynolds number in the trans- 
formed flow is that of the real flow at stagnation temperature and pressure 
(suffix 0). As in Stewartson’s treatment of the laminar boundary layer, the stream 
function is required to be invariant against the transformation, viscosity is 
taken as proportional to temperature, and the boundary-layer flow is assumed 
iso-energetic. 

In  his original paper, Mager (1958) presented more general relations than those 
above, claiming to improve the transformation by allowing a more accurate 
description of the variation of viscosity with temperature. However, following 
publication by Squire (1962) of an unfavourable comparison between skin- 
friction measurements in helium and the predictions of this more general form 
of the transformation, Mager (1962) reimposed Stewartson’s restriction on 
viscosity variation. This reduced his transformation to the form of (3.1) and 
considerably improved its correlation of the helium skin-friction measurements. 

3.2. Boundary-layer calculation using the transformation 
The above transformation may be combined with the incompressible calculation 
method of the previous section to predict turbulent boundary-layer develop- 
ment in compressible flows. The procedure adopted by the author has been to 
transform the compressible problem (stated as a streamwise distribution of, 
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for example, Mach number, given initial values of two independent boundary- 
layer parameters from which the variables 8 and a of equations (2.2) and (2.6) 
may be evaluated) into its equivalent incompressible one, predict boundary- 
layer development in the incompressible plane using equations (2.2), (2.5), 
(2.6) and (2.7), and transform the solution back to the compressible plane. All 
calculations have been performed on a digital computer, using an Adams- 
Bashforth library routine to integrate equations (2.2) and (2.6). 

3.3. Other transformations of Head’s method 
Shortly after the above procedure had been developed, Standen (1964) published 
details of a similar treatment based on Head’s method and the transformation of 
Culick & Hill (1958). 

The difference between the two analyses lies chiefly in their respective trans- 
formations of the streamwise co-ordinate. In  so far as Mager claims that his 
transformation is quite general and may be applied to flows with adverse pressure 
gradients, whereas Culick & Hill claim only to treat accelerating flows, there may 
be a slight case for preferring the present method to that of Standen. However, the 
difference between the two methods is small compared with the difference between 
either of them and the method described in the next section. It is for this reason 
that no comparisons with calculations by Standen’s method are included in this 
paper. 

Similarly, the more recent procedure of So (1965), which uses modified versions 
of Head’s method and Coles’s (1962) compressibility transformation, is not 
considered. In  his comparisons with experiment, So found that his predictions 
showed ‘no significant improvement’ over those of Standen. 

4. A calculation procedure based on a direct estimate of the entrainment 
in a compressible flow 

4.1. The basic hypothesis 
In  his original paper on the turbulent boundary layer at low speeds, Head (1960) 
suggested that an extension of the method to compressible flow might be of 
interest. The treatment given in this section followed his reiteration of this 
suggestion to the present author. 

The central question in making the extension is how Head’s empirical relation 
between entrainment and the shape parameter HI should be treated. Head 
argued that in incompressible flow, ‘the distribution of mean velocity in the 
boundary layer, in particular the velocity defect in its outer part (measured 
roughly by form parameters such as Hand  HI),  should control, or at least stand 
in close quantitative relationship with, the entrainment process’. Although he 
mentions the wake function of Coles (1956) as one (perhaps the most likely) of 
a number of approaches which might lead to a more logical prediction of entrain- 
ment, the recent paper of Escudier & Nicoll(l966) shows little benefit by adopt- 
ing this approach. Assuming, then, that the original proposal was reasonably 
well founded, how should it be qualified in discussing compressible flows ? 

In  his original paper Head tentatively suggested that the density variation in 
the outer part of a supersonic boundary layer would have little effect on the 
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entrainment mechanism. We take up this suggestion by assuming that varying 
density does not change the relation which Head postulates between entrainment 
and the spatial distribution of velocity in the outer part of the layer. Further, we 
assume this velocity distribution is adequately specified by the shape parameter, 

(where suffix k denotes a ‘kinematic’ property of the compressible layer). That 
is to say, entrainment P and the shape parameter (HJk  are assumed to satisfy 
the empirical relation obtained by Head for incompressible flow, and F is now 
defined by the equation 

(4.2) 

There are three principal reasons for making this assumption here; it is simple, 
it is in line with Head’s original suggestion, and it provides an alternative treat- 
ment to compare with that derived using the transformation. At the same time 
it is fairly sweeping and can properly be assessed only by comparison with 
experiment. There seems no good a priori reason t o  regard it as any more than a 
first-order attempt to treat the compressible problem. 

There is, however, some evidence that as a first approximation it may not be 
seriously astray. Morkovin (1962) found strong evidence that the structure of the 
compressible layer is essentially the same as that found at low speeds. The 
transport mechanisms are dominated by the large eddies, with the large-scale 
velocity field driving the turbulent exchanges. Density variation appears to 
modulate rather than essentially change this structure, and to allow for this 
modulation some scaling of y is allowed when comparing compressible and in- 
compressible flows. Thus compressibility transformations are not precluded. 
Nevertheless, when Morkovin compared measured distributions of non-dimen- 
sional shear stress and streamwise velocity fluctuations in high and low speed 
flows he found best agreement using the undistorted ordinate y/6 rather than any 
transformed scale. In itself this result has some affinity with the present entrain- 
ment assumption. 

More recently Bradshaw & Ferriss (1 966) have used Morkovin’s arguments to ex- 
tend their own ‘turbulent energy’ method to compressible flows. They concluded 
that in both high and low speed flows the entrainment rate is proportional to 
the maximum value of r / p  in the interval y > $3. For constant pressure flows this 
maximum occurs at  the inner boundary y = $3. In  another recent paper, Maise 
& McDonald (1967) have surveyed the experimental evidence and deduced that 
for flat plate boundary layers the distribution across the layer of non-dimensional 

1 

I? = Pe = y p u d y .  ue dz o 

= ~ (y mixing length, 1 - 
s saupy  p 

is almost independent of Mach number. Hence for constant pressure flows we 
might argue 

P cc 1 (5) (Bradshaw & Ferris) 
4 P 1/=4s 

oc (2 e)z (Maise & McDonald) 
u, aY v=as 
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so that entrainment depends only on the spatial distribution of velocity. With 
the further assumption of Head's method, that velocity profiles belong to  a one- 
parameter family, we conclude that ( (Slue) a ~ / a y ) ~ +  and (therefore) F are 
functions of (HJk only. 

This is indirect experimental evidence that (in constant pressure flows at  
least) the present entrainment assumption allows adequately for compressi- 
bility effects. Exploratory use of the assumption as the basis of a prediction 
method for H therefore seems justified. Whether and in what circumstances it is 
a poor approximation will probably be discovered only by direct comparison 
with experiment. 

4.2. General relations 

From (4.2), the streamwise rate of increase of mass flow in a compressible boun- 

a dary layer may be written 
( P e u e  A) = ~ e u e F  

where, in compressible flow, 

Equation (4.3) may be rearranged 

1 dP Jlz, due 

u, ax Pe ax 

or, substituting 
for --e, 

A due 
-. - - F+(M:- l ) - -  
ax u, ax 
dA 

(4.3) 

(4.4) 

and, with the same substitution, the momentum-integral equation for compres- 

ae cf 6 due sible flow is 

(4.5) - - -- (H+2-MM,2)--. 
& 2  ue ax 

It is worth noting that, provided F is the quantity defined by (4.2), equations 
(4.4) and (4.5) involve no assumptions other than the usual boundary-layer 
approximations. 

4.3. Auxiliary relations 

To allow solution of (4.4) and (4.5) given the streamwise distribution of Mach 
number, auxiliary relations are needed to provide local values of cr, H and F.  

In  the present work, the immediate object was a comparison with some 
measurements made by the author (Green 1966) in a boundary layer which was 
recovering after interaction with an oblique shock wave. This comparison was 
intended primarily as a test of the assumption that Head's relation between 
F and HI could be used in these flows. Therefore the author's measurements 
were used wherever possible to provide other empirical relations needed in the 
analysis. 
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FIGURE 2. Correlations of transformed and kinematic shape parameters measured 
downstream of a shock wave/boundary-layer interaction. 

Thus in figure 2a the values of the transformed shape parameter 

and of HI (the ratio A10 of the two quantities calculated by the method) obtained 
from the author’s measurements are plotted against each other. In  figure 2b  
their kinematic equivalents and (HJk  similarly obtained, are plotted. 
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We see that Head's incompressible correlation is not in very good agreement 
with either set of data, and that they are better fitted by 

a = 1 + (0*9/(H1- 3-3))@75 (4.6) 

and (H1)k = 3.4 + 1*87/ ( (H)k  - 0.5)". (4.7) 
In  the appendix, relations are given between analogous parameters in the 

two above families, i.e. between integrals of the form 

and their counterparts with density excluded, 

These relations include one of the form 

(See equation (A 5 ) . )  
Now the calculation procedure determines, as it advances, local values of A 

and 0. From their ratio HI we may determine B from (4.6), use the result of the 
appendix equation (A 5 ) ,  to evaluate and then obtain (HJk  from (4.7). 
Hence we may determine P, since we have assumed it to relate to (HJk  in the 
manner proposed by Head. Standen (1964) has fitted Head's empirical curve 

(4.9) with the equation 

To evaluate the remaining unknowns in the momentum integral equation, 
H and cf, we follow Spence (1961). It is assumed that the temperature distribu- 
tion through the boundary layer is given by the quadratic 

( H ) k  = a+(nl,,H). ( 4 4  

P = 0*0306( (H1)k - 3*0)-0.653. 

(4.10) 

where suffices w and r indicate respectively wall and recovery temperatures. 
This is probably a fair approximation in flows with appreciable pressure 

gradients but small heat transfer, or with small pressure gradients and iso- 
thermal walls. It would be expected to fail if there was a significant streamwise 
variation in wall temperature, or if heat transfer and pressure gradients were 
both appreciable. Its use makes the present treatment slightly more general 
than that of the previous section, which was restricted by the transformation to 
iso-energetic flows. 

From this temperature distribution it follows that 

(4.11) 
l e  

where a is given by (4.6). 
To determine cf, Spence proposed the transformation of an incompressible 

skin-friction law to a reference state given by Eckert's (1955) intermediate 

T,-  (4.12) 
temperature relation. Thus 

where T, is the intermediate temperature 

Cf = ijr Cf, 
m 

Tm = 0-5 (T, + T,) + 0.22 (T, - T,) (4.13) 
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and Cf is a skin-friction coefficient evaluated from an incompressible law at  a 
Reynblds number 

(4.14) 

R, is the Reynolds number based on the actual momentum thickness and the 
free-stream properties of the compressible flow, and the viscosity ratio may be 
obtained from Sutherland’s viscosity law. An appropriate incompressible skin- 
friction law is that of Ludwieg & Tillmann (1949). Consistent with Spence’s 
arguments, the transformed shape parameter B is taken as the equivalent of the 
conventional shape parameter in incompressible flow. Thus 

Cr = 0.246exp ( - 1.561 a) &0268. (4.15) 

4.4. Summary of the method 

Boundary-layer development is calculated by simultaneously advancing the 
entrainment equation, (4.4), and the momentum integral equation, (4.5). 

At the end of each step new values of A and 6 are obtained and local values of 
$4 and ?(, are known. Then HI = Ale, H is evaluated from (4.6)’ Hk from (4.8), 
( H J k  from (4.7) and finally P from (4.9). Knowing a, H is now determined from 
(4.11). T, is evaluated from (4.15), pe/,um is determined from a suitable viscosity 
relation, and we evaluate, in turn, & (equation (4.14)), Cf (equation (4.15)) and 
cf (equation (4.12)). The forward integration of (4.4) and (4.5) may now be taken 
a step further. 

In  using this method to predict boundary-layer development in the flows 
observed by the author, wall and stagnation temperature were taken as equal 
(since this was fortuitously the case in the experiments) and recovery tempera- 
ture was obtained by assuming a recovery factor of 0.89 (a value widely used for 
turbulent flow). Computations were performed using the same library integra- 
tion routine as for calculations under the transformation. 

5. A comparison between measurements in a disturbed supersonic 
boundary layer and the predictions of the two methods 

5.1. The experimental results 

The experiments with which the two calculation methods are compared are to be 
reported fully elsewhere and will only be outlined here. 

Briefly, a two-dimensional wedge of variable incidence was installed to span a 
supersonic wind tunnel and to produce a plane oblique shock wave which was 
reflected a t  the tunnel floor. The pressure on the floor rose steeply through the 
region of shock reflexion and thereafter remained nearly constant for an appreci- 
able distance. Boundary-layer development through the pressure rise and the 
subsequent constant pressure region was observed by pitot traverse. 

TheMach number of the undisturbed flowwas 2.5 and the momentum thickness 
Reynolds number at the point of shock impingement was about 3 x lo4. The 
flows produced by incident shocks with nominal deflexion angles of 2,3$, 5,6&, 8 
and 94 degrees were studied. 
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For the weakest three shocks, the boundary layer remained attached through- 
out the interaction region. For shocks of 6 + O  and above a closed separation 
bubble formed within the region of rising pressure, its streamwise extent in- 
creasing with shock strength. The measurements used here were all made in the 
attached flow downstream of the pressure rise, where the boundary layer was 
recovering towards its equilibrium form for zero pressure gradient. 

Since the tunnel floor was plane and streamwise pressure gradients were 
small, splay, the gradient normal to the floor, was also everywhere small and the 
use of a first-order boundary-layer analysis therefore justified. To test for cross- 
flows, the two-dimensional momentum integral equation was advanced (the 
integrand being evaluated from the experimental data) and the resulting dis- 
tribution of momentum thickness compared with experiment. In  almost all 
cases the disagreement was within the experimental scatter, and was small 
compared with changes in such other quantities as displacement thickness and 
shape parameter. 

5.2. Performance of the two methods 

The methods are compared in terms of their predictions of the transformed shape 
parameter H .  This parameter is an analogue, in compressible flow, of the con- 
ventional shape parameter H which is generally used as a test of calculation 
procedures in incompressible flow. Like the latter it is important in that it 
correlates strongly with skin-friction coefficient. Also, since its 'flat plate' value 
varies only slightly with Mach number, it  provides a good qualitative indication 
of the local state of the boundary layer relative both to separation and to con- 
stant pressure equilibrium. 

Figures 3a to 3f compare the calculated and observed distributions of 8. 
In every case there is a marked discrepancy between the two procedures. 

The predictions of the method derived by extending Head's arguments to 
compressible flows are in general reasonably good. The initial rapid fall in H is 
fairly well described, even for the most severely disturbed flows, and it is only 
in the latter part of the calculation that the rate of recovery of H is under- 
estimated. For the 99" shock (figure 3 f ) ,  the predicted value of H at the down- 
stream limit of the measurements is about 10 yo higher than the observed value. 
For the other shocks this discrepancy is less than 5 yo. 

The predictions of the method using a transformation are indifferent by com- 
parison. The predicted rate of decrease in H is appreciably too low and in some 
cases, where there is a slight adverse pressure gradient over the f i s t  part of the 
development, an initial increase is predicted. For the 94' shock, the predicted 
value of H at the most downstream measurement is about 40% too high. For 
other shocks, the error at  the downstream limit is generally more than four 
times the error of the other calculation. 

These results would seem at first sight to provide strong support for the direct 
extension of Head's method, and to cast doubt on the validity of the transfor- 
mation. 

However, Bradshaw & Ferriss (1965), in their study of an incompressible 
boundary layer which was recovering after a period of adverse pressure gradient, 
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FIGURE 3. Comparison between the predictions of the two calculation methods and the 
observed shape parameter development downstream of a shock wave/boundary-layer 
interaction. 

showed that Head’s method underestimated the observed rate of recovery. We 
must therefore ask whether Head’s method should be expected to predict the 
present flows satisfactorily. 

In  this context some qualitative differences between the experiments of 
Bradshaw & Ferriss (1965) and those of the present author (Green 1966) should 
not be overlooked. In  Bradshaw’s flow, the boundary layer developed in an 
‘equilibrium ’ pressure gradient for a considerable distance before entering the 
constant pressure region. Thus stress levels within the boundary layer had 
attained their equilibrium values in the region of adverse pressure gradient, and 
thereafter, in the constant pressure region, were observed to decay very slowly. 
In  contrast, the pressure rise in the flows studied by the present author was very 
abrupt, and it seems unlikely that the boundary layer approached equilibrium 
conditions during this rise. Furthermore, Bradshaw & Galea (1967) have ob- 
served that shear stresses are not immediately affected very much by steep 
pressure gradients, i.e. the response of the shear stress to pressure variation seems 
slow. 
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Thus we do not know how to expect a physically realistic adaptation to super- 
sonic flow of Head’s method to perform in the present test. The work of 
Bradshaw & Ferriss (1965) indicates that complete agreement cannot be expected 
but, for the reasons given above, it may well be an unreliable guide to the likely 
divergence. 

Some test of the present two methods is needed against a type of flow for 
which, at low speeds, Head‘s method is known to give satisfactory results. The 
limited experimental data obtained in pressure gradients at supersonic speeds 
have been discounted because they involve appreciable pressure gradients 
ap/ay across the boundary layer. We therefore resort to some of the numerous 
measurements obtained in equilibrium, constant pressure flows. 

6. The shape parameter Hl in compressible flows at constant pressure 

6.1. The predictions of methods bmed on a transformation 

The transformation described in $3.1 may be written in the general form 

to which all transformations under which the stream function is invariant may 
be reduced. 

Using a bar to denote all quantities in the transformed plane, we may write 
- 
% = E%, A = EA. (6.2) 

With uniform external flow, E and G are constant in most transformations, 
including that of Mager, so that 

Now in zero pressure gradient 

so that 

and 

d B  Cf ad 
- and -=F(Ql) dZ z - 2  

d8 G Ef - - -  cr 
d x - E Z  2 
- - _ _  

d h  G C C 
- = B F ( B l )  = f F ( H l )  = -fF(Hl), 
dx C f  Cf 

since Hl is invariant under the transformation. 
Thus, according to the transformation, compressibility does not affect the 

relative rates of growth of mass flow and momentum thicknesses, and values of 
HI found in compressible flow should be the same as the values found in incom- 
pressible flows at  equivalent Reynolds numbers. This is consistent with the 
hypothesis that the flow in the transformed plane is identical to some real 
compressible flow. 
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6.2. The predictions of the direct calculation method 

Equations (6.5) and (6.6) obtained from the transformation may be contrasted 
with the zero pressure gradient versions of (4.5) and (4.4) 

Although the two momentum equations are the same, the above entrainment 
rate dA/dx is higher than that predicted by the transformation by a factor? 
Cflcf if values of P are equal. We may note, moreover, that in flows with equal 
H,, F ( (HJk)  is greater than P(H,). 

The immediate conclusion is that with increasing Mach number this analysis 
predicts an increase in the rate of growth of mass flow thickness relative to that 
of momentum thickness. As this will result in higher values of HI,  the value of 
F( (H& might well be less than that in incompressible flow. Consequently the 
estimation of Hl in compressible flow is not entirely straightforward. 

An upper limit to Hl may be obtained by assuming that the rate of entrain- 
ment is independent of Mach number. I n  this case dhldx remains constant with 
increasing Mach number while dO/dx decreases as cf/Cf. Hl will therefore be roughly 
cf/cf times its value in incompressible flow. 

A more realistic estimate of Hl based on the direct calculation method would 
seem to be its equilibrium value for which, in zero pressure gradient, clHlldx is 

d h  dB C 
- = F((H1)J = Hl- = H l - f .  
ax ax 2 

zero. I n  this case, 

Using the velocity profile family of Thompson (1965) for incompressible flows, 
a value of Hl of 8 is found to be typical of the incompressible flat plate boundary 
layer. The variation of Hl with Reynolds number is small so that, using a bar 
now to  denote quantities in the incompressible flow, it is a good approximation 

(6.10) 
to write 

From the last two equations we obtain 

F = 8(Cf/2). 

(6.11) 

The results of the appendix are used to obtain (Hl),c given H,, and F may be 
taken as P(8). 

Equation (6.11) thus provides an estimate of the equilibrium value of Hl. The 
earlier arguments, in which dA/dx was assumed independent of Mach number, 
provided an estimated upper limit for H,, 

Hl = S(Cf/cf). (6.13) 

t This is now the ratio of skin-friction coefficient in incompressible and compressible 
flows at ‘corresponding ’ Reynolds numbers and, although the definition of corresponding 
presents difficulties, is a quantity which unmistakably increases with Mach number. 
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For the present purpose, the variation of cflcf with Mach number has been 
obtained from the empirical relation of Spalding & Chi (1964), taking the flow 
to be adiabatic a t  a constant value of R, = lo7.  

I 1 I I I I ’  
- 0 Adcock et al. - 

0 * Lobb et  al. 
0 Hastings 

- A Hammitt, various sources - 

6.3. Comparison with measurements in zero pressure gradient in 
supersonic flow 

The variation of Hl with Mach number according to the above hypotheses is 
shown in figure 4, together with some experimental results. The line Hl = constant 
predicted by the transformation is also shown. 

28 

24 
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16 
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I 
0 1.0 2 0  30 40 50 6.0 

M 

FIGURE 4. Variation of H ,  with Mach number in adiabatic flow at constant pressure. 

The differences between the three hypotheses are large a t  higher Mach num- 
bers and it is at once apparent that the experimental results cannot be recon- 
ciled with a transformation. I n  contrast the upper two lines, though their diver- 
gence indicates the crudity of their respective derivations, do lie within the 
spread of the experimental data and, more important, they broadly follow the 
trend with Mach number of these data. 

Some of the results shown in figure 4 were obtained on wind tunnel walls and 
so are not strictly ‘flat plate’ measurements. Exceptions to this are the measure- 
ments by Hastings (1964) on a flat plate a t  M = 4, and those by Adcock, Peterson 
& McRee (1965) on the outside of a cylinder at M = 6. It is interesting that in 
both these cases the trend was for Hl to start high and to decrease with down- 
stream distance. That is, the trend in Hl was broadly towards what has been 
suggested here to be an equilibrium value. 

49 Fluid Mech. 31 
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7. Further discussion of the compressibility transformation 
7.1. Coles’s transformation and its variants 

For completeness, we shall finally consider the analysis in which Coles (1962), 
by discarding the previously accepted equality between stream functions, 
developed a transformation for which he claimed considerable generality 
provided the flow was bounded by a smooth wall. An important feature of his 
analysis was the ‘Law of Corresponding Stations’, 

which provided a necessary (but not sufficient) equality between corresponding 
points in any two flows related by the transformation. 

I n  considering supersonic flows in zero pressure gradient, Coles took the condi- 
tion of constant pressure to be invariant against the transformation. His ‘Law 
of Corresponding Stations’ then became a suficient identity between the two 
flows (in constant pressure incompressible flow sufficiently far from transition, 
the boundary layer is uniquely defined by a single non-dimensional quantity 
such as 3,) and could be used to test the validity of the transformation. 

For the present purpose, the right-hand side of (6.13) has been evaluated from 
typical experimental data obtained, well downstream of transition, by Hastings 
(1964) and by Adcock et al. (1965). I n  each case the ‘corresponding station’ in 
incompressible flow is a t  a moderate Reynolds number, well away from transi- 
tion, and with a value of HI (evaluated from Thompson’s (1965) profile family) 
slightly less than 8. Thus Coles’s transformation shares with its simpler predeces- 
sors the failure to predict the observed (figure 4) trend of HI with M .  

A similar failure has been noted by Baronti & Libby (1966), who found that 
velocity profiles measured in supersonic flow a t  constant pressure, when trans- 
formed, became qualitatively akin to profiles in an incompressible flow with 
favourable pressure gradient. They observed that Coles assumed a priori, on 
grounds of physical appeal, that the condition of constant pressure was invariant, 
but argued that Crocco’s (1963) extension of Coles’s work showed that this was 
not formally necessary. This led to their proposal that the counterpart of a 
supersonic constant pressure flow might be an incompressible flow with favour- 
able pressure gradient. 

The trend of data in figure 4 might lead us to  adopt a similar position. Thus, if 
Coles’s condition on constant pressure is abandoned, his ‘ Law of Corresponding 
Stations’ is no longer a sufficient relation between the two flows. I n  fact, if the 
transformation is rigorously applied, an infinity of similar relations, involving 
Reynolds numbers based on characteristic lengths of the form 

will be obtained. These may be restated as the invariance against the transforma- 
tion of the ratio (e.g. H I )  of any two of these quantities. 
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We might therefore proceed by defining a corresponding station in incom- 
pressible flow by values of C f R B  and El ( = Hl).  From the high Mach number data 
in figure 4 it is clear that this corresponding incompressible flow will have ex- 
perienced considerable favourable pressure gradient. 

Crocco’s work, however, suggests that this interpretation of the transformation 
is not permissible. His equation (2.25), which Baronti & Libby cite as formally 
allowing pressure gradients to intrude, is discussed by him a t  length in $ 3  of 
his paper. He concludes that ‘...it is almost exactly true that the condition of 
constant pressure is invariant against the transformation, as originally postu- 
lated by Coles’. 

I n  fact, for adiabatic flows at  constant pressure and without transpiration, 
this statement must be exactly true if Coles’s transformation is to apply rigorously 
to the flow adjacent to the wall. Since friction at the wall is Newtonian, we may 
write Coles’ equation (3.2) 

where CT and q are scaling factors of the transformation. For zero heat transfer, 

and we obtain 

(g)w = (g)w = (Z) = 0 

($) =+”) P”g . 
W 

w Pi%PwT3 aY w 
(7.3) 

At the wall, Coles’ equations (1.2) and (1.4) reduce to 

and 

and we see that if the supersonic flow is a t  constant pressure all the terms in the 
above equations are zero. 

This result applies to any transformation which involves the Howarth- 
Dorodnitsyn ordinate transformation, a velocity scaling factor which is inde- 
pendant of y ,  and Newtonian friction a t  the wall in both real and transformed 
flows. It is simply that for zero heat transfer (ap/ay), and therefore (d2ij/dy2)w 
are zero. Thus if dpldx is zero it follows that d p l d x  is zero because (ap/ay),  is zero 
in adiabatic high speed flow and therefore curvature of the velocity profile a t  
the wall must be zero in both real and transformed planes. 

At this point we may note a difficulty in Crocco’s form of the transformation. 
For supersonic flow a t  constant pressure the three terms in his equation ( 2 . 2 5 )  
must vanish. Consider however a virtually adiabatic Bow in which the local heat 
transfer rate is vanishingly small but (because of a very small amount of up- 
stream heat transfer) there is a small, finite stagnation enthalpy thickness. In  
this case the term in square brackets on the right-hand side of Crocco’s equation 
(2.25) may become large, positive or negative. It seems physically unreasonable 

49-2 
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that the transformed version of this flow should be sensitive to changes in a 
negligibly small heat transfer rate-i.e. virtually identical flows, differing only 
in the detail of their heat transfer distributions, ought to remain virtually iden- 
tical in the transformed plane. From Crocco’s equation (2 .25)  it  is clear that this 
result will be obtained only if both cr and 7 are independent of x. 

But Colest and Crocco, by their ‘substructure’ hypotheses, and Baronti & 
Libby by their ‘ sublayer’ hypothesis, have proposed that r should be a decreasing 
function of x. If the above argument is accepted we must disallow these hypo- 
theses and, with them, the impressive collapse of skin-friction data achieved by 
Coles and the similarly impressive correlation of velocity profiles by Baronti & 
Libby. 

The point a t  issue is not the ability of the transformation to provide a good 
approximate relation between certain properties of compressible and incom- 
pressible flows (which, with a suitable choice of its scaling factors, it  certainly 
does). It is, rather, the claim by its originator that ‘the transformation represents 
a t  every stage a genuine kinematic and dynamic correspondence between two 
real flows, both of which are capable of being observed experimentally’. 

The emphasis here should be on the word ‘real’. Coles points out that the 
turbulent shear stress is, in effect, defined by the (stated) fluid accelerations. 
Thus his transformation relates two hypothetical time-average flows which 
genuinely satisfy the equations of motion.$ What remains open to question is 
whether, without fully understanding the structure of turbulent flows, we can 
say that, for an observed time-average compressible flow, the corresponding 
time-average flow in the transformed plane (although it satisfies the equations 
of motion) is really a possibility. 

It is suggested here that a valid test of this question is the comparison between 
experimental values, in high and low speed adiabatic flows at constant pressure, 
of such supposed invariants as H,. 

7.2. On the definition of boundary-luyer thickness 

It might be objected that there are a t  least two reasons why H,, since it involves 
the boundary-layer thickness 6, is a poor basis for such a test. First, the definition 
of 6 is quite arbitrary. Secondly, its determination from a plot of experimental 
values of u/u, against y is prone to error. 

Baronti & Libby, however, discussing the failure of the transformation t o  
describe the outer ‘velocity defect’ region, show that the actual definition of 

t We should remember that Coles thought the energy equation had no significant part 
to play in the transformation for constant pressure flow. From this standpoint one might 
maintain that, since it follows from requiring a consistent transformation of the energy 
and momentum equations, Crocco’s equation (2.26) is irrelevant and there is thus no argu- 
ment for daldx being zero. 

$ If, as mooted by Baronti & Libby, an adiabatic high speed flow at constant pressure 
were transformed to an accelerating low speed flow, physical realism would have to be 
compromised a t  the wall. The mapping to low speed would yield a velocity profile with 
zero curvature at  the wall but a non-zero value of ( aT/@j)%, the equations of motion would 
be satisfied but the shear-stress and velocity fields adjacent to the wall would be physically 
incompatible. 
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S is qualitatively unimportant, 'the discrepancy in the correlation of the outer 
layer cannot be accounted for on this basis'. 

Figure 5 shows velocity profiles measured in incompressible flow and at  
Mach 6 by, respectively, Smith & Walker (1958) and Adcock et al. (1965). The 
flows are adiabatic, at constant pressure, and for both profiles the quantity 
(Pf&iPWPul) crR0 is 13. 

0 Adcock et al. 
0 Smith &Walker 

1 , , 
0-&I 0 

0 0 2  0 4  0.8 1.0 

FIGURE 5. Comparison between two velocity profiles which satisfy Coles's 'Law of Corres- 
ponding Stations', one measured in incompressible flow and the other at Mach 6. 

The axes are E/Ue = U/U, 

and 

These two equalities hold good for every transformation discussed in this 
paper, and at corresponding stations the functions 

should therefore be identical. Clearly this is not so in figure 5 .  
The values of 3 at G/Ue and u/ue = 0.995 are shown, and also S,,, the value 

obtained by Adcock et al. (and which is used in figure 4) by extrapolating the 
linear portion of the Pitot pressure distribution. 
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We see that 816 for the compressible boundary layer is almost twice that of 
the corresponding incompressible layer, and that the ‘tail’ beyond ij = 8 is 
very much greater for the compressible layer. Also, the compressible profile is 
much fuller near the wall (a perhaps surprising result in view of Baronti & 
Libby’s successful correlation of the wall region). In  fact, though the fullness of 
incompressible profiles increases with Reynolds number, and that shown in 
figure 5 is at  one of the lowest Reynolds numbers measured by Smith & Walker, 
none of these authors’ measured profiles, even a t  their highest Reynolds number, 
is fuller than the Mach 6 profile in figure 5. 

0 02  0 4  0.6 08 1.0 

Pp-Pe 
Pne-Pe 

FIGURE 6. Pitot profiles measured in incompressible flow and at Mach 6, showing the much 
greater thickness of the high speed boundary layer. 

Because, at high Mach number, the velocity defect is so small over the outer 
part of the layer, there is a danger that it may be masked by small errors in 
temperature measurement. This does not mean, however, that there is a large 
uncertainty as to the thickness of the layer. Figure 6 shows the Pitot pressure 
distributions for the two profiles shown in figure 5. There can be little doubt that 
the region into which vorticity is transported is about twice as thick a t  M = 6 
as the transformation would lead us to expect. 
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8. Concluding remarks 
In  any attempt to predict the time-average properties of a (hydrodynamic) 

turbulent boundary layer in low speed flow, by far the greatest uncertainty lies 
in quantifying the influence which the turbulent motion has on the time-average 
flow. This paper has demonstrated, by considering two hypotheses, neither of 
which is obviously unreasonable, that in compressible flow this uncertainty 
increases appreciably with increasing Mach number. 

Considering flows at constant pressure, we find it implicit in compressibility 
transformations that entrainment rate (a crude measure of turbulence effects) 
and skin-friction coefficient decrease proportionately with increasing Mach 
number. On the other hand, Head’s original suggestions lead to a model of the 
flow in which the fractional reduction in entrainment is appreciably less than that 
in skin-friction coefficient. 

The available data from experiments in constant pressure flows reveal a 
variation of the shape parameter HI with Mach number which endorses the 
second of these views. Moreover, there is broad quantitative agreement between 
theory and experiment on the extent of this variation. I n  contrast, compressi- 
bility transformations imply no variation. It is shown that this feature is com- 
mon to all transformations, and results in a gross underestimate of boundary- 
layer thickness a t  high Mach numbers. 

Further support for the second treatment is found in comparisons with the 
observed boundary-layer development downstream of an abrupt pressure rise. 
Accordingly, this direct extension of Head’s method is put forward as an interim 
calculation procedure for supersonic flows. 

This work was performed in the Aeronautics Sub-Department of the Cam- 
bridge University Engineering Laboratory. It was supervised by Mr E. P. Sutton 
and Dr L. C. Squire, and profitably discussed with Dr M. R. Head who is also 
acknowledged in the text. The author is extremely grateful for all the advice and 
encouragement he received, and wishes also to thank Mr R. C. Hastings for access 
to some unpublished data and the then D.S.I.R. for financial support. 

Appendix. Relations between ‘transformed’ and ‘kinematic’ shape para- 
meters for a compressible boundary layer 

We are concerned with relations between integral parameters of the form 

which will here be referred to as ‘kinematic’ parameters, and corresponding 
‘transformed’ parameters of the form 

where we have made the substitutions 
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The author has treated this problem in general terms elsewhere (Green 1966) 
and will present only two particular results here. These results are for boundary 
layers in which the relation between velocity and temperature is the parabola 

i.e. for flows with an adiabatic wall and recovery factor r or, writing r = 1, for 
iso-energetic flows. They apply to flows in which the velocity profile in the trans- 
formed plane fits the power law relation 

u/u, = (&/F)l’”. (A 4) 
3.0 

1 .o 1.4 1.8 2.2 2.6 3.0 

Measured values ( H )  

FIGURE 7 .  
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For y = 1.4, the following two expressions are obtained: 

777 

H k = H  1+ ! I .  

'?{ (3H B ( R + l ) '  - 1)  ( 2 H  - 1) IJ' I+-- 1- 

which is used in the calculation method of $4, and 

rMz 

In  figure 7 these relations are tested against the author's measurements in the 
region downstream of a shock reflexion. 

I n  figure 7 a  measured values of ( H ) ,  are plotted against values deduced from 
(A 5) using measured values of H and assuming a recovery factor of 1. I n  figure 7 b 
measured values of (H& are plotted against values deduced from (A 6). I n  both 
cases agreement is satisfactory and adequately justifies the use made of this 
analysis in the calculation method of $4. 
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